首页> 外文会议>Advances in computational intelligence, man-machine systems and cybernetics >Principal Component Analysis for Fault Detection and Diagnosis. Experience with a pilot plant
【24h】

Principal Component Analysis for Fault Detection and Diagnosis. Experience with a pilot plant

机译:故障检测和诊断的主成分分析。有中试工厂的经验

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the application of Principal Component Analysis (PCA) for fault detection and diagnosis (FDD) in a real plant. PCA is a linear dimensionality reduction technique. In order to diagnosis the faults, the PCA approach includes one PCA model for each system behavior, i.e., a PCA model for normal operation conditions and a PCA model for each faulty situation. Data set is generated in closed loop. The method of fault detection and diagnosis is based on the definition of threshold minimum. These are calculated by the 0 statistics and levels of significance. The PCA models outputs (in this case the O statistics) are compared with theirs thresholds minimum, with and without faults. The only one that does not violate it threshold says us the actual system situation, i.e., identify the fault. Finally, this technique is applied to a two tanks system, and can be demonstrated that it is possible to detect and identify faults.
机译:本文介绍了主成分分析(PCA)在实际工厂中进行故障检测和诊断(FDD)的应用。 PCA是一种线性降维技术。为了诊断故障,PCA方法包括针对每种系统行为的一个PCA模型,即,针对正常操作条件的PCA模型和针对每种故障情况的PCA模型。数据集是闭环生成的。故障检测和诊断方法基于最小阈值的定义。这些由0统计量和显着性水平计算得出。将PCA模型输出(在这种情况下为O统计量)与它们的最小阈值进行比较(有无故障)。唯一不违反阈值的阈值告诉我们实际的系统情况,即确定故障。最终,该技术被应用于两个水箱系统,并且可以证明有可能检测和识别故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号