【24h】

Web Spam Detection Using Link-Based Ant Colony Optimization

机译:基于链接的蚁群优化的Web垃圾邮件检测

获取原文
获取原文并翻译 | 示例

摘要

Web spam is one of the most important problems which degrade quality and efficiency of web search engines. In this paper, we present a novel link-based ant colony optimization learning algorithm for spam host detection. The host graph is first constructed by aggregating pages' hyperlink structure. Following the Trust Rank assumption, ants start walking from a normal host and randomly follow host links with a probability distribution. Then, the classification rules are appropriately generated according to common features of normal hosts sequentially discovered by ants. From the experiments with the WEBSPAM-UK2006 dataset, the proposed learning model provides much accuracy in classifying both normal and spam hosts than several baselines, including a state of the art C4.5. Moreover, we also provide an analysis in parameter tuning for better results.
机译:网络垃圾邮件是降低网络搜索引擎质量和效率的最重要问题之一。在本文中,我们提出了一种新颖的基于链接的垃圾邮件主机检测蚁群优化学习算法。首先通过汇总页面的超链接结构来构造宿主图。按照“信任等级”假设,蚂蚁开始从正常主机行走,并随机跟随主机链接进行概率分布。然后,根据蚂蚁顺序发现的正常宿主的共同特征,适当地产生分类规则。通过使用WEBSPAM-UK2006数据集进行的实验,所提出的学习模型在分类正常和垃圾邮件主机方面比几个基准(包括最新的C4.5)具有更高的准确性。此外,我们还提供了参数调整方面的分析以获得更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号