首页> 外文会议>Advanced data mining and applications >Privacy-Preserving Distributed k-Nearest Neighbor Mining on Horizontally Partitioned Multi-Party Data
【24h】

Privacy-Preserving Distributed k-Nearest Neighbor Mining on Horizontally Partitioned Multi-Party Data

机译:水平分区多方数据的隐私保护分布式k最近邻挖掘

获取原文
获取原文并翻译 | 示例

摘要

k-Nearest Neighbor (k-NN) mining aims to retrieve the k most similar objects to the query objects. It can be incorporated into many data mining algorithms, such as outlier detection, clustering, and k-NN classification. Privacy-preserving distributed k-NN is developed to address the issue while preserving the participants' privacy. Several two-party privacy-preserving k-NN mining protocols on horizontally partitioned data had been proposed, but they fail to deal with the privacy issue when the number of the participating parties is greater than two. This paper proposes a set of protocols that can address the privacy issue when there are more than two participants. The protocols are devised with the probabilistic public-key cryptosystem and the communicative cryptosystem as the core privacy-preserving infrastructure. The protocols' security is proved based on the Secure Multi-party Computation theory.
机译:k最近邻居(k-NN)挖掘的目的是检索与查询对象最相似的k个对象。它可以合并到许多数据挖掘算法中,例如离群值检测,聚类和k-NN分类。开发了隐私保护的分布式k-NN,以解决该问题,同时保留参与者的隐私。已经提出了几种在水平划分的数据上保留两方隐私的k-NN挖掘协议,但是当参与方的数量大于两个时,它们无法处理隐私问题。本文提出了一套协议,可以解决两个以上参与者之间的隐私问题。该协议是用概率公共密钥密码系统和通信密码系统设计的,是核心的隐私保护基础结构。基于安全多方计算理论证明了协议的安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号