首页> 外文会议>Advanced data mining and applications >A Learning Method of Detecting Anomalous Pedestrian
【24h】

A Learning Method of Detecting Anomalous Pedestrian

机译:行人异常检测的学习方法

获取原文
获取原文并翻译 | 示例

摘要

Abnormal behavior detecting is one of the hottest but most difficult subjects in Monitoring System. It is hard to define "abnormal" in different scenarios. In this paper firstly the classification of motion is conducted, and then conclusions are made under specific circumstances. In order to indicate a pedestrian's movements, a complex number notation based on centroid is proposed. And according to the different sorts of movements, a set of standard image contours are made. Different behavior matrices based on spatio-temporal are acquired through Hidden Markov Models (HMM). A Procrustes shape analysis method is presented in order to get the similarity degree of two contours. Finally Fuzzy Associative Memory (FAM) is proposed to infer behavior classification of a walker. Thus anomalous pedestrians can be detected in the given condition. FAM can detect irregularities and implement initiative analysis of body behavior.
机译:异常行为检测是监控系统中最热门但最困难的主题之一。在不同情况下很难定义“异常”。本文首先对运动进行分类,然后在特定情况下得出结论。为了指示行人的运动,提出了基于质心的复数符号。并根据不同类型的运动,制作了一组标准图像轮廓。通过隐马尔可夫模型(HMM)获取基于时空的不同行为矩阵。为了获得两个轮廓的相似度,提出了一种Procrustes形状分析方法。最后提出了模糊联想记忆(FAM)来推断步行者的行为分类。因此,可以在给定条件下检测异常行人。 FAM可以发现违规行为,并对身体行为进行主动分析。

著录项

  • 来源
  • 会议地点 Chengdu(CN);Chengdu(CN)
  • 作者

    Yue Liu; Jun Zhang; Zhijing Liu;

  • 作者单位

    Communication Engineering Department, Beijing Electronic Science Technology Institute, 100070, Beijing, China;

    School of Computer Science and Technology, Xidian University, 710071 Xi'an, China;

    School of Computer Science and Technology, Xidian University, 710071 Xi'an, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP311.13;
  • 关键词

    FAM; HMM; behavior classification; procrustes; centroid;

    机译:FAM; HMM;行为分类; rust重心;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号