首页> 外文会议>Adaptive and natural computing algorithms >QR-DCA: A New Rough Data Pre-processing Approach for the Dendritic Cell Algorithm
【24h】

QR-DCA: A New Rough Data Pre-processing Approach for the Dendritic Cell Algorithm

机译:QR-DCA:树突状细胞算法的一种新的粗糙数据预处理方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new approach of data preprocessing based on rough set theory for the Dendritic Cell Algorithm (DCA). Our hybrid immune inspired model, denoted QR-DCA, is based on the functioning of dendritic cells within the framework of rough set theory and more precisely, on the QuickReduct algorithm. As the DCA data pre-processing phase is divided into two sub-steps, feature selection and signal categorization, our QR-DCA model selects the right features for the DCA classification task and categorizes each one of them to its specific signal category. This is achieved while preserving the same DCA main characteristic which is its lightweight in terms of running time. Results show that our new approach generates good classification results. We will also compare our QR-DCA to other rough DCA models to show that our new approach outperforms them in terms of classification accuracy while keeping the worthy characteristics expressed by the DCA.
机译:在本文中,我们为树突状细胞算法(DCA)提出了一种基于粗糙集理论的数据预处理新方法。我们的混合免疫启发模型称为QR-DCA,它基于粗糙集理论框架内的树突状细胞的功能,更准确地说是基于QuickReduct算法。由于DCA数据预处理阶段分为两个子步骤,即特征选择和信号分类,因此我们的QR-DCA模型为DCA分类任务选择正确的特征,并将每个特征归为特定信号类别。这是在保持DCA相同主要特征的同时实现的,该主要特征是运行时间短。结果表明,我们的新方法产生了良好的分类结果。我们还将把QR-DCA与其他粗糙的DCA模型进行比较,以表明我们的新方法在分类准确性方面胜过它们,同时又保留了DCA所表达的有价值的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号