首页> 外文会议>Accessing Multilingual Information Repositories; Lecture Notes in Computer Science; 4022 >Combining Visual Features for Medical Image Retrieval and Annotation
【24h】

Combining Visual Features for Medical Image Retrieval and Annotation

机译:结合视觉特征进行医学图像检索和注释

获取原文
获取原文并翻译 | 示例

摘要

In this paper we report our work using visual feature fusion for the tasks of medical image retrieval and annotation in the benchmark of ImageCLEF 2005. In the retrieval task, we use visual features without text information, having no relevance feedback. Both local and global features in terms of both structural and statistical nature are captured. We first identify visually similar images manually and form templates for each query topic. A pre-filtering process is utilized for a coarse retrieval. In the fine retrieval, two similarity measuring channels with different visual features are used in parallel and then combined in the decision level to produce a final score for image ranking. Our approach is evaluated over all 25 query topics with each containing example image(s) and topic textual statements. Over 50,000 images we achieved a mean average precision of 14.6%, as one of the best performed runs. In the annotation task, visual features are fused in an early stage by concatenation with normalization. We use support vector machines (SVM) with RBF kernels for the classification. Our approach is trained over a 9,000 image training set and tested over the given test set with 1000 images and on 57 classes with a correct classification rate of about 80%.
机译:在本文中,我们报告了使用视觉特征融合的工作,以ImageCLEF 2005为基准,用于医学图像检索和注释的任务。在检索任务中,我们使用没有文本信息,没有相关反馈的视觉特征。就结构和统计性质而言,都捕获了本地和全局特征。我们首先手动识别视觉上相似的图像,然后为每个查询主题形成模板。预过滤过程用于粗略检索。在精细检索中,并行使用具有不同视觉特征的两个相似性测量通道,然后在决策级别进行组合以产生最终得分以进行图像排名。我们对所有25个查询主题进行了评估,每个主题都包含示例图像和主题文本语句。作为性能最好的运行之一,我们获得了50,000多张图像,平均平均精度为14.6%。在注释任务中,视觉特征在早期通过归一化与归并融合在一起。我们使用带有RBF内核的支持向量机(SVM)进行分类。我们的方法在9,000个图像训练集上进行了训练,并在给定的测试集上测试了1000个图像,并在57个类上进行了测试,正确分类率约为80%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号