首页> 外文期刊>Pattern recognition letters >Modeling continuous visual features for semantic image annotation and retrieval
【24h】

Modeling continuous visual features for semantic image annotation and retrieval

机译:为语义图像注释和检索建模连续的视觉特征

获取原文
获取原文并翻译 | 示例

摘要

Automatic image annotation has become an important and challenging problem due to the existence of semantic gap. In this paper, we firstly extend probabilistic latent semantic analysis (PLSA) to model continuous quantity. In addition, corresponding Expectation-Maximization (EM) algorithm is derived to determine the model parameters. Furthermore, in order to deal with the data of different modalities in terms of their characteristics, we present a semantic annotation model which employs continuous PLSA and standard PLSA to model visual features and textual words respectively. The model learns the correlation between these two modalities by an asymmetric learning approach and then it can predict semantic annotation precisely for unseen images. Finally, we compare our approach with several state-of-the-art approaches on the Corel5k and CoreBOk datasets. The experiment results show that our approach performs more effectively and accurately.
机译:由于语义间隙的存在,自动图像标注已成为一个重要且具有挑战性的问题。在本文中,我们首先将概率潜在语义分析(PLSA)扩展为连续量模型。此外,派生了相应的Expectation-Maximization(EM)算法来确定模型参数。此外,为了处理不同形式的数据的特征,我们提出了一种语义注释模型,该模型使用连续PLSA和标准PLSA分别对视觉特征和文本词进行建模。该模型通过非对称学习方法来学习这两种模态之间的相关性,然后可以为看不见的图像精确预测语义标注。最后,我们将我们的方法与Corel5k和CoreBOk数据集上的几种最新方法进行了比较。实验结果表明,我们的方法性能更高,更准确。

著录项

  • 来源
    《Pattern recognition letters》 |2011年第3期|p.516-523|共8页
  • 作者单位

    Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,College of Computer Science and Information Technology, Cuangxi Normal University, Guilin 541004, China;

    Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;

    Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;

    Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Automatic image annotation; Continuous PLSA; Latent aspect model; Semantic gap; Image retrieval;

    机译:自动图像标注;连续PLSA;潜在长宽比模型;语义间隙;图像检索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号