首页> 外文会议>9th IAPR workshop on document analysis systems 2010 >Towards More Effective Distance Functions for Word Image Matching
【24h】

Towards More Effective Distance Functions for Word Image Matching

机译:朝着更有效的距离功能进行文字图像匹配

获取原文
获取原文并翻译 | 示例

摘要

Matching word images has many applications in document recognition and retrieval systems. Dynamic Time Warping (DTW) is popularly used to estimate the similarity between word images. Word images axe represented as sequences of feature vectors, and the cost associated with dynamic programming based alignment is considered as the dissimilarity between them. However, such approaches are computationally costly when compared to fixed length matching schemes. In this paper, we explore systematic methods for identifying appropriate distance metrics for a given database or language. This is achieved by learning query specific distance functions which can be computed online efficiently. We show that a weighted Euclidean distance can outperform DTW for matching word images. This class of distance functions are also ideal for scalability and large scale matching. Our results are validated with mean Average Precision (mAP) on a fully annotated data set of 160K word images. We then show that the learnt distance functions can even be extended to a new database to obtain accurate retrieval.
机译:匹配词图像在文档识别和检索系统中有许多应用。动态时间规整(DTW)通常用于估计单词图像之间的相似性。单词图像ax表示为特征向量序列,与基于动态编程的对齐方式相关的成本被视为它们之间的差异。然而,当与固定长度匹配方案相比时,这种方法在计算上是昂贵的。在本文中,我们探索了用于识别给定数据库或语言的适当距离度量的系统方法。这是通过学习可在线有效计算的查询特定距离函数来实现的。我们表明,加权的欧几里得距离可以胜过DTW以匹配单词图像。此类距离函数也是可伸缩性和大规模匹配的理想选择。我们的结果在一个带有完整注释的16万个单词图像数据集上的平均平均精度(mAP)得到了验证。然后,我们表明,所学习的距离函数甚至可以扩展到新的数据库以获得准确的检索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号