首页> 外文会议>8th World Multi-Conference on Systemics, Cybernetics and Informatics(SCI 2004) vol.2: Computing Techniques >On eigenfunction approach to data mining: outlier detection in high-dimensional data sets
【24h】

On eigenfunction approach to data mining: outlier detection in high-dimensional data sets

机译:特征函数方法进行数据挖掘:高维数据集中的异常检测

获取原文
获取原文并翻译 | 示例

摘要

We present two methods, one based on eigenvalue analysis, and the other, a modified version of singular value decomposition (SVD) called pseudo-SVD, for mining outliers in high-dimensional data sets. The eigenvalue analysis approach examines the spatial relationship among the column vectors of object-attribute matrix to obtain an insight into the degree of inconsistency in a cluster of data. The pseudo-SVD method, in which the singular values are allowed to have a sign, looks at the direction of vectors in the object-attribute matrix and based on the degree of their orthogonality detects the outliers. The pseudo-SVD algorithm is formulated as an optimisation problem for clustering the data on the basis of their angular inclination. A framework for this approach is formulated and further research directions are discussed.
机译:我们提出了两种方法,一种基于特征值分析,另一种是奇异值分解(SVD)的改进版本,称为伪SVD,用于挖掘高维数据集中的异常值。特征值分析方法检查对象-属性矩阵的列向量之间的空间关系,以了解数据簇中不一致的程度。允许奇异值带有符号的伪SVD方法查看对象属性矩阵中矢量的方向,并基于它们的正交度检测异常值。伪SVD算法被公式化为一种优化问题,用于根据数据的角度倾斜度对数据进行聚类。制定了这种方法的框架,并讨论了进一步的研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号