首页> 外文会议>8th Workshop on syntax, semantics and structure in statistical translation 2014 >Transduction Recursive Auto-Associative Memory: Learning Bilingual Compositional Distributed Vector Representations of Inversion Transduction Grammars
【24h】

Transduction Recursive Auto-Associative Memory: Learning Bilingual Compositional Distributed Vector Representations of Inversion Transduction Grammars

机译:转导递归自动联想记忆:学习反向转译语法的双语成分分布矢量表示

获取原文
获取原文并翻译 | 示例

摘要

We introduce TRAAM, or Transduction RAAM, a fully bilingual generalization of Pollack's (1990) monolingual Recursive Auto-Associative Memory neural network model, in which each distributed vector represents a bilingual constituent-i.e., an instance of a transduction rule, which specifies a relation between two monolingual constituents and how their subcon-stituents should be permuted. Bilingual terminals are special cases of bilingual constituents, where a vector represents either (1) a bilingual token-a token-to-token or "word-to-word" translation rule -or (2) a bilingual segment-a segment-to-segment or "phrase-to-phrase" translation rule. TRAAMs have properties that appear attractive for bilingual grammar induction and statistical machine translation applications. Training of TRAAM drives both the autoencoder weights and the vector representations to evolve, such that similar bilingual constituents tend to have more similar vectors.
机译:我们介绍TRAAM或Transduction RAAM,这是Pollack(1990)单语言递归自动联想记忆神经网络模型的完全双语概括,其中每个分布的矢量代表双语成分,即转导规则的实例,它指定了一个关系在两个单语选民之间,以及他们的子选民应该如何排列。双语终端是双语成分的特殊情况,其中向量表示(1)双语令牌-令牌到令牌或“单词到单词”的翻译规则-或(2)双语段-片段到-段或“短语到短语”翻译规则。 TRAAM具有对双语语法归纳和统计机器翻译应用程序有吸引力的属性。 TRAAM的训练驱动自动编码器权重和矢量表示不断发展,从而使相似的双语成分倾向于具有更多的相似矢量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号