首页> 外文会议>8th International Workshop on Systems, Signal and Image Processing, Jun 7-9, 2001, Bucharest-Romania >SEGMENTATION OF DUAL-BAND IMAGES OF X-RAY CHICKEN BREAST USING A COMPETITIVE HOPFIELD NEURAL NETWORK
【24h】

SEGMENTATION OF DUAL-BAND IMAGES OF X-RAY CHICKEN BREAST USING A COMPETITIVE HOPFIELD NEURAL NETWORK

机译:竞争性霍夫神经网络对X射线鸡胸片双波段图像进行分割

获取原文
获取原文并翻译 | 示例

摘要

The contaminant detection process of a food product is an Important stage of a modern food production factory. The large demand of bone-free for meat has lead producers to use automated systems. One such system is the automated detection of bones from raw chicken breast meat. An X-ray image of the breast meat product is taken and analysed by the system. The most important step of the process of inspecting that product is the segmentation of the image Mo meaningful objects (bones). This paper presents a Competitive Hopfield Neural Network for the segmentation of dual-band X-ray images of raw chicken breast meat, A back-propagation neural network or a simple look-up table can then be used to assign the segments into desired categories (bones, or non-bone objects).
机译:食品的污染物检测过程是现代食品生产工厂的重要阶段。对肉类的无骨需求量很大,导致生产者使用自动化系统。一种这样的系统是自动检测生鸡肉胸肉中的骨头。该系统拍摄并分析了乳房产品的X射线图像。检查该产品过程中最重要的步骤是对图像Mo有意义的对象(骨骼)进行分割。本文提出了一种竞争性Hopfield神经网络,用于对生鸡肉胸肉的双波段X射线图像进行分割,然后可以使用反向传播神经网络或简单的查找表将这些段分配给所需的类别(骨骼或非骨骼对象)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号