【24h】

A NOVAL AUDIO CLASSIFICATION ALGORITHM BASED ON GA AND SVM WITH COMBINED KERNEL FUNCTION

机译:基于GA和SVM的核函数组合的音频分类算法。

获取原文
获取原文并翻译 | 示例

摘要

Audio classification is an important access to extract audio structure and content, and is a premise for audio content analysis, retrieval and further treatment. Support Vector Machine (SVM) is a valid statistic learning method. In this paper, learning algorithm of SVM is introduced to construct classifier, and construct a new kernel function and use Genetic Algorithm (GA) to optimize the parameters of classifier model. This paper proposes a new audio classification algorithm, GA-CBSVM based on GA and SVM with combined kernel function to classify speech, music and their mixed audio. The experimental results show that GA-CBSVM is excellent for audio classification and the average of classification accuracy is up to 93.08%.
机译:音频分类是提取音频结构和内容的重要途径,并且是音频内容分析,检索和进一步处理的前提。支持向量机(SVM)是一种有效的统计学习方法。本文介绍了支持向量机的学习算法来构造分类器,构造一个新的核函数,并使用遗传算法(GA)对分类器模型的参数进行优化。提出了一种基于遗传算法和支持向量机的音频分类算法GA-CBSVM,并结合核函数对语音,音乐及其混合音频进行分类。实验结果表明,GA-CBSVM具有良好的音频分类能力,平均分类准确率高达93.08%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号