首页> 外文期刊>IEEE Transactions on Image Processing >Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification
【24h】

Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification

机译:为基于SVM的高光谱图像分类定制内核功能

获取原文
获取原文并翻译 | 示例

摘要

Previous research applying kernel methods such as support vector machines (SVMs) to hyperspectral image classification has achieved performance competitive with the best available algorithms. However, few efforts have been made to extend SVMs to cover the specific requirements of hyperspectral image classification, for example, by building tailor-made kernels. Observation of real-life spectral imagery from the AVIRIS hyperspectral sensor shows that the useful information for classification is not equally distributed across bands, which provides potential to enhance the SVM''s performance through exploring different kernel functions. Spectrally weighted kernels are, therefore, proposed, and a set of particular weights is chosen by either optimizing an estimate of generalization error or evaluating each band''s utility level. To assess the effectiveness of the proposed method, experiments are carried out on the publicly available 92AV3C dataset collected from the 220-dimensional AVIRIS hyperspectral sensor. Results indicate that the method is generally effective in improving performance: spectral weighting based on learning weights by gradient descent is found to be slightly better than an alternative method based on estimating ";relevance"; between band information and ground truth.
机译:先前将诸如支持向量机(SVM)的内核方法应用于高光谱图像分类的研究已取得了与最佳可用算法竞争的性能。但是,很少有人努力扩展SVM来满足高光谱图像分类的特定要求,例如,通过构建量身定制的内核。通过AVIRIS高光谱传感器对现实生活中的光谱图像进行观察,发现用于分类的有用信息在各个频段上分布不均,这通过探索不同的内核功能为增强SVM的性能提供了潜力。因此,提出了频谱加权的内核,并通过优化泛化误差的估计或评估每个频段的效用水平来选择一组特定的权重。为了评估所提出方法的有效性,对从220维AVIRIS高光谱传感器收集的公开可用的92AV3C数据集进行了实验。结果表明该方法通常可以有效地改善性能:发现基于梯度下降学习权重的频谱加权要比基于估计“相关性”的替代方法稍好。在乐队信息和地面真相之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号