【24h】

A Single Layer Linear Countrpropagation (SLLIC) Network for Prediction and Function Approximation

机译:用于预测和函数逼近的单层线性对数传播(SLLIC)网络

获取原文
获取原文并翻译 | 示例

摘要

in this paper we investigate the use of neural networks in function approximation, data fitting, and prediction. Due to its superior performance, the counterpropagation network was considered and an attempt was made to enhance its performance. As a result of this work, we propose a new neural network architecture named single layer linear counterpropagation (SLLIC) network. The SLLIC neural net has the following additional features: weight Initialization, automatic structure determination, and higher order neural network concepts. The SLLIC network was tested and results show that the performance of the system in terms of good approximation or prediction is comparable to and some times better than other neural nets architecture's and traditional techniques.
机译:在本文中,我们研究了神经网络在函数逼近,数据拟合和预测中的使用。由于其优越的性能,因此考虑了反向传播网络,并尝试增强其性能。这项工作的结果是,我们提出了一种新的神经网络体系结构,称为单层线性对向传播(SLLIC)网络。 SLLIC神经网络具有以下附加功能:权重初始化,自动结构确定和高阶神经网络概念。对SLLIC网络进行了测试,结果表明,该系统在良好逼近或预测方面的性能可与其他神经网络体系结构和传统技术相媲美,有时甚至要好一些。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号