首页> 外文会议>6th International conference on practical applications of computational biology amp; bioinformatics. >Parallel e-CCC-Biclustering: Mining Approximate Temporal Patterns in Gene Expression Time Series Using Parallel Biclustering
【24h】

Parallel e-CCC-Biclustering: Mining Approximate Temporal Patterns in Gene Expression Time Series Using Parallel Biclustering

机译:并行e-CCC聚类:使用并行聚类挖掘基因表达时间序列中的近似时间模式

获取原文
获取原文并翻译 | 示例

摘要

The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from either microarray or RNAseq technologies, is critical to advance our understanding of complex biomedical processes such as growth, development, response to stimulus, disease progression and drug responses. In this paper, we propose parallel e-CCC-Biclustering, a parallel version of the state of the art e-CCC-Biclustering algorithm, an efficient exhaustive search biclustering algorithm to mine approximate temporal expression patterns. Parallel e-CCC-Biclustering implemented using functional programming and achieved a super-linear speed-up when compared to the original sequential algorithm in test cases using synthetic data.
机译:从微阵列或RNAseq技术获得的监测表达模式随时间变化以及观察基因表达时间序列出现连贯时间响应的能力对于增进我们对复杂生物医学过程(例如生长,发育)的理解至关重要,对刺激的反应,疾病进展和药物反应。在本文中,我们提出了并行e-CCC-Biclustering,这是最先进的e-CCC-Biclustering算法的并行版本,这是一种有效的穷举搜索双聚类算法,用于挖掘近似的时间表达模式。使用功能编程实现的并行e-CCC-Biclustering与使用合成数据的测试用例中的原始顺序算法相比,实现了超线性加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号