首页> 外文会议>2019 56th ACM/IEEE Design Automation Conference >DeePattern: Layout Pattern Generation with Transforming Convolutional Auto-Encoder
【24h】

DeePattern: Layout Pattern Generation with Transforming Convolutional Auto-Encoder

机译:DeePattern:具有转换卷积自动编码器的布局图案生成

获取原文
获取原文并翻译 | 示例

摘要

VLSI layout patterns provide critic resources in various design for manufacturability researches, from early technology node development to back-end design and sign-off flows. However, a diverse layout pattern library is not always available due to long logic-to-chip design cycle, which slows down the technology node development procedure. To address this issue, in this paper, we explore the capability of generative machine learning models to synthesize layout patterns. A transforming convolutional auto-encoder is developed to learn vector-based instantiations of squish pattern topologies. We show our framework can capture simple design rules and contributes to enlarging the existing squish topology space under certain transformations. Geometry information of each squish topology is obtained from an associated linear system derived from design rule constraints. Experiments on 7 nm EUV designs show that our framework can more effectively generate diverse pattern libraries with DRC-clean patterns compared to a state-of-the-art industrial layout pattern generator.
机译:从早期的技术节点开发到后端设计和签核流程,VLSI布局模式为可制造性研究的各种设计提供了批评资源。但是,由于逻辑到芯片的设计周期较长,因此并不总是可以使用多样化的布局模式库,这会减慢技术节点的开发过程。为了解决这个问题,在本文中,我们探索了生成式机器学习模型综合布局模式的能力。开发了一种转换卷积自动编码器,以学习基于矢量的压缩模式拓扑实例。我们展示了我们的框架可以捕获简单的设计规则,并有助于在某些转换下扩大现有的压缩拓扑空间。每个挤压拓扑的几何信息是从关联的线性系统中获得的,该线性系统是从设计规则约束中得出的。在7 nm EUV设计上进行的实验表明,与最先进的工业布局图案生成器相比,我们的框架可以更有效地生成具有DRC干净图案的各种图案库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号