首页> 外文会议>2019 56th ACM/IEEE Design Automation Conference >Fast Performance Estimation and Design Space Exploration of Manycore-based Neural Processors
【24h】

Fast Performance Estimation and Design Space Exploration of Manycore-based Neural Processors

机译:基于Manycore的神经处理器的快速性能估计和设计空间探索

获取原文
获取原文并翻译 | 示例

摘要

In the design of a neural processor, a cycle-accurate simulator is usually built to estimate the performance before hardware implementation. Since using the simulator to perform design space exploration (DSE) of hardware architecture is quite time consuming, we propose a novel method to use a high-level analytical model for fast DSE. In the model, non-deterministic execution delay is modeled with some parameters whose contribution to the performance is estimated statically by simulation. The viability of the proposed methodology is confirmed with two neural processors with different manycore architectures, achieving 2000 times speed-up within 3% accuracy error, compared with simulator-based DSE. CCS CONCEPTS •Computer systems organization → Multicore architectures;
机译:在神经处理器的设计中,通常会构建一个周期精确的模拟器,以在硬件实现之前估算性能。由于使用模拟器执行硬件体系结构的设计空间探索(DSE)非常耗时,因此我们提出了一种使用高级分析模型进行快速DSE的新方法。在该模型中,使用一些参数对不确定的执行延迟进行建模,这些参数通过仿真静态估计对性能的贡献。与基于模拟器的DSE相比,使用具有不同多核架构的两个神经处理器可以证实所提出方法的可行性,在3%的准确度误差内实现了2000倍的加速。 CCS概念•计算机系统组织→多核体系结构;

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号