首页> 外文会议>4th International Conference on Intelligent Data Engineering and Automated Learning IDEAL 2003 Mar 21-23, 2003 Hong Kong, China >Comparative Study between Radial Basis Probabilistic Neural Networks and Radial Basis Function Neural Networks
【24h】

Comparative Study between Radial Basis Probabilistic Neural Networks and Radial Basis Function Neural Networks

机译:径向基概率神经网络与径向基函数神经网络的比较研究

获取原文
获取原文并翻译 | 示例

摘要

This paper exhaustively discusses and compares the performance differences between radial basis probabilistic neural networks (RBPNN) and radial basis function neural networks (RBFNN). It is proved that, the RBPNN is better than the RBFNN, in the following several aspects: the contribution of the hidden center vectors to the outputs of the neural networks, the training and testing speed, the pattern classification capability, and the noises toleration. Finally, two experimental results show that our theoretical analyses are completely correct.
机译:本文详尽讨论并比较了径向基概率神经网络(RBPNN)和径向基函数神经网络(RBFNN)的性能差异。事实证明,在以下几个方面,RBPNN比RBFNN更好:隐藏的中心向量对神经网络输出的贡献,训练和测试速度,模式分类能力以及噪声容忍度。最后,两个实验结果表明我们的理论分析是完全正确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号