首页> 外文会议>4th ACM international workshop on data and text mining in bioinformatics 2010 >Discovering Biological Processes and Side Effects Relationship Using the Process-drug-side effect Network
【24h】

Discovering Biological Processes and Side Effects Relationship Using the Process-drug-side effect Network

机译:使用过程-药物-副作用网络发现生物过程和副作用之间的关系

获取原文
获取原文并翻译 | 示例

摘要

The side effect of drugs often results from a response to the unintended target of a drug. Recently there have been researches identifying targets of known drugs based on the side effect information. These researches, however, did not consider the association of drugs both with targets and with biological processes. The recent development of a database of the side effects, SIDER, is a first step to provide the relationship between drugs and side effects. In this paper, we propose a novel process-drug-side effect network that discovers the relationship between biological processes and side effects. The multi-level network (the process-drug-side effect network) is built by merging the drug-biological process network and the drug-side effect network. Evaluation is conducted in two ways: 1) how many biological processes discovered by our method are found in co-occurred GO terms with biological processes extracted from the PubMed records by a text mining technique. 2) whether there is the performance improvement by limiting response processes by drugs sharing the same side effect only to frequent ones. The experimental results show that our process-drug-side effect network is able to discover meaningful relationships between biological processes and side effects in an efficient manner.
机译:药物的副作用通常是由对药物意外目标的反应引起的。近来,已经有研究基于副作用信息来鉴定已知药物的靶标。然而,这些研究没有考虑药物与靶标和生物过程的关联。 SIDER副作用数据库的最新开发是提供药物与副作用之间关系的第一步。在本文中,我们提出了一个新颖的过程-药物-副作用网络,该网络发现了生物过程与副作用之间的关系。多级网络(过程-药物-副作用网络)是通过合并药物-生物过程网络和药物-副作用网络而建立的。评估有两种方式:1)通过文本挖掘技术,从共同发表的GO术语中发现与通过PubMed记录提取的生物学过程共发现多少个生物学过程。 2)通过限制仅对频发副作用相同的副作用的药物限制反应过程,是否可以改善性能。实验结果表明,我们的过程-药物-副作用网络能够有效地发现生物学过程与副作用之间的有意义的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号