【24h】

Plasma dynamics of microwave excited microplasmas in a sub-millimeter cavity

机译:亚毫米腔中微波激发的等离子体的等离子体动力学

获取原文
获取原文并翻译 | 示例

摘要

Summary form only given. Capacitively coupled microplasmas in dielectric cavities have a range of applications from VUV lighting sources for surface treatment to radical production. Due to the large surface-to-volume ratio of these devices, the wall mediated dynamics of plasma transport are important to the uniformity and confinement of the plasma. For example, there may be applications where a plume of ionized gas is desired from the microcavity - whereas other applications may require a confined plasma emitting only VUV photons.In this paper, we will discuss results from a computational investigation of the plasma dynamics in microwave excited micro plasma VUV lighting sources. A 2dimensional hydrodynamics model, the Hybrid Plasma Equipment Model, has been used in which radiation and electron energy transport are addressed using Monte Carlo techniques. The microdischarges have widths of:: 1 mm and lengths of :: 1 cm, operate at pressures of 1-20 Torr, with microwave power of 2-10s Watt at 2.5 GHz and a flow rate of several sccm. Gases are either pure rare gases or mixtures of rare gases. We found that the plasma operates in a mode that has both normal-glow and abnormal glow characteristics. Under usual operation in argon, plasmas are produced with a peak electron density of 1013 cm-3. The plasma may not fill the microdischarge cavity at low power. As the power is increased, the plasma expands to fill the cavity. In this regard, the plasma operates as a normal glow. The current density, however, increases with increasing power, and so in this regard, the plasma resembles an abnormal glow. The expansion of the plasma will eventually overfill the cavity, at which time a plasma plume is formed. These plasma dynamics are sensitive to gas mixture. The scaling of plasma confinement and VUV production as a function of aspect ratio, power and gas mixture will be discussed.
机译:仅提供摘要表格。介电腔中的电容耦合微等离子体具有从表面处理的VUV光源到产生自由基的一系列应用。由于这些装置的大的表面体积比,壁介导的等离子体传输动力学对等离子体的均匀性和封闭性很重要。例如,在某些应用中可能需要从微腔中获得电离气体羽流-而在其他应用中可能需要仅发射VUV光子的受限等离子体。在本文中,我们将讨论微波中等离子体动力学的计算研究结果激发的微等离子体VUV光源。已经使用二维流体动力学模型,即混合等离子体设备模型,其中使用蒙特卡洛技术解决了辐射和电子能量的传输问题。微放电的宽度为:: 1 mm,长度为:: 1 cm,在1-20 Torr的压力下工作,在2.5 GHz的微波功率为2-10s瓦特,流速为数sccm。气体可以是纯稀有气体,也可以是稀有气体的混合物。我们发现等离子体以既具有正常辉光特征又具有异常辉光特征的模式运行。在氩气中的常规操作下,产生的等离子体的峰值电子密度为1013 cm-3。在低功率下,等离子体可能不会填充微放电腔。随着功率的增加,等离子体膨胀以填充空腔。在这方面,等离子体作为正常的辉光工作。然而,电流密度随着功率的增加而增加,因此在这方面,等离子体类似于异常辉光。等离子体的膨胀最终将使腔体充满,这时将形成等离子体羽流。这些等离子体动力学对气体混合物敏感。将讨论等离子体限制和VUV产生的比例与纵横比,功率和气体混合物的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号