首页> 外文会议>2nd workshop on representation learing for NLP 2017 >Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning
【24h】

Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning

机译:计划,参加,生成:具有计划的字符级神经机器翻译

获取原文
获取原文并翻译 | 示例

摘要

We investigate the integration of a planning mechanism into an encoder-decoder architecture with attention. We develop a model that can plan ahead when it computes alignments between the source and target sequences not only for a single time-step, but for the next k timesteps as well by constructing a matrix of proposed future alignments and a commitment vector that governs whether to follow or recompute the plan. This mechanism is inspired by strategic attentive reader and writer (STRAW) model, a recent neural architecture for planning with hierarchical reinforcement learning that can also learn higher level temporal abstractions. Our proposed model is end-to-end trainable with differentiable operations. We show that our model outperforms strong baselines on character-level translation task from WMT'15 with less parameters and computes alignments that are qualitatively intuitive.
机译:我们研究了将计划机制集成到编码器-解码器体系结构中的过程。我们开发了一个模型,该模型不仅可以针对单个时间步,而且还可以针对接下来的k个时间步计算源序列和目标序列之间的比对,并通过构建拟议的未来比对矩阵和控制是否遵循或重新计算计划。此机制的灵感来自于战略专注的读写器(STRAW)模型,这是一种用于分层增强学习的计划规划的最新神经体系结构,还可以学习更高级别的时间抽象。我们提出的模型具有可操作性的端到端训练。我们显示出,该模型在参数较少的情况下胜过WMT'15进行的字符级翻译任务的强大基线,并且计算出的定性直观。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号