首页> 外文会议>22nd conference on computational natural language learning >Uncovering Code-Mixed Challenges: A Framework for Linguistically Driven Question Generation and Neural based Question Answering
【24h】

Uncovering Code-Mixed Challenges: A Framework for Linguistically Driven Question Generation and Neural based Question Answering

机译:发现代码混合的挑战:语言驱动的问题生成和基于神经的问题回答框架

获取原文
获取原文并翻译 | 示例

摘要

Existing research on question answering (QA) and comprehension reading (RC) are mainly focused on the resource-rich language like English. In recent times, there has been a rapid growth of multi-lingual contents on the web, and this has posed several challenges to the existing QA systems. Code-mixing is one such challenge that makes the task even more complex. In this paper, we propose a linguistically motivated technique for code-mixed question generation (CMQG) and a neural network based architecture for code-mixed question answering (CMQA). For evaluation, we manually create the code-mixed questions for Hindi-English language pair. In order to show the effectiveness of our neural network based CMQA technique, we utilize two benchmark datasets, viz. SQuAD and MMQA. Experiments show that our proposed model achieves encouraging performance on CMQG and CMQA.
机译:现有的关于问答(QA)和理解阅读(RC)的研究主要集中在资源丰富的语言(如英语)上。近年来,网络上多语言内容的快速增长,这对现有的质量检查系统提出了一些挑战。混合代码就是一种挑战,它使任务变得更加复杂。在本文中,我们提出了一种基于语言的代码混合问题生成(CMQG)技术和基于神经网络的代码混合问题回答(CMQA)体系结构。为了进行评估,我们手动为北印度语-英语语言对创建了代码混合题。为了显示基于神经网络的CMQA技术的有效性,我们利用了两个基准数据集,即。 SQuAD和MMQA。实验表明,我们提出的模型在CMQG和CMQA上取得了令人鼓舞的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号