首页> 外文会议>22nd conference on computational natural language learning >Vectorial semantic spaces do not encode human judgments of intervention similarity
【24h】

Vectorial semantic spaces do not encode human judgments of intervention similarity

机译:向量语义空间无法编码人类对干预相似性的判断

获取原文
获取原文并翻译 | 示例

摘要

Despite their practical success and impressive performances, neural-network-based and distributed semantics techniques have often been criticized as they remain fundamentally opaque and difficult to interpret. In a vein similar to recent pieces of work investigating the linguistic abilities of these representations, we study another core, defining property of language: the property of long-distance dependencies. Human languages exhibit the ability to interpret discontinuous elements distant from each other in the string as if they were adjacent. This ability is blocked if a similar, but extraneous, element intervenes between the discontinuous components. We present results that show, under exhaustive and precise conditions, that one kind of word embeddings and the similarity spaces they define do not encode the properties of intervention similarity in long-distance dependencies, and that therefore they fail to represent this core linguistic notion.
机译:尽管基于神经网络的分布式语义技术取得了实践上的成功和令人印象深刻的性能,但由于它们在根本上仍然不透明且难以解释,因此经常受到批评。与研究这些表示形式的语言能力的最新作品类似,我们研究了另一个定义语言属性的核心:长距离依赖项的属性。人类语言具有解释字符串中彼此不连续的不连续元素的能力,就好像它们是相邻的一样。如果在不连续的组件之间插入相似但无关的元素,则会阻止此功能。我们提供的结果表明,在详尽而精确的条件下,一种单词嵌入及其定义的相似性空间不会对长距离依赖项中的干预相似性进行编码,因此它们无法代表这一核心语言概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号