首页> 外文会议>2018 IEEE/ACM 8th Workshop on Irregular Applications: Architectures and Algorithms >High-Performance GPU Implementation of PageRank with Reduced Precision Based on Mantissa Segmentation
【24h】

High-Performance GPU Implementation of PageRank with Reduced Precision Based on Mantissa Segmentation

机译:基于尾数分割的精度降低的PageRank的高性能GPU实现

获取原文
获取原文并翻译 | 示例

摘要

We address the acceleration of the PageRank al- gorithm for web information retrieval on graphics processing units (GPUs) via a modular precision framework that adapts the data format in memory to the numerical requirements as the iteration converges. In detail, we abandon the IEEE 754 single- and double-precision number representation formats, employed in the standard implementation of PageRank, to instead store the data in memory in some specialized formats. Furthermore, we avoid the data duplication by leveraging a data layout based on mantissa segmentation. Our evaluation on a V100 graphics card from NVIDIA shows acceleration factors of up to 30% with respect to the standard algorithm operating in double-precision.
机译:我们通过模块化精度框架解决了PageRank算法在图形处理单元(GPU)上进行Web信息检索的加速问题,该框架在迭代收敛时使内存中的数据格式适应数值要求。详细地说,我们放弃了在PageRank的标准实现中采用的IEEE 754单精度和双精度数字表示格式,而是以某些特殊格式将数据存储在内存中。此外,我们通过利用基于尾数分割的数据布局来避免数据重复。我们对NVIDIA V100图形卡的评估显示,与以双精度运行的标准算法相比,加速因子高达30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号