【24h】

A Hybrid Indoor Localization System Running Ensemble Machine Learning

机译:集成室内机器学习的混合室内定位系统

获取原文
获取原文并翻译 | 示例

摘要

The need for localization in various fields of applications and the lack of efficiency in using GPS indoor leads to the development of Indoor Localization Systems. The recent rapid growth of mobile users and Wi-Fi infrastructure of modern buildings enables different methodologies to build high performance indoor localization system with minimum investment. This paper presents a novel model for indoor localization system on Android mobile devices with built-in application running ensemble learning method and artificial neural network. The system performance is enhanced with the implementation of background filters using built-in sensors. Notably, the proposed model is designed to gradually converge to location the longer the runtime. It eventually produces the correct rate of 95 percent for small-room localization with error radius of approximately 0.5 to 1 meter and the convergence time of 10 seconds at best. The developed model can run offline and optimized for embedded systems and Android devices based on pre-built models of Wi-Fi fingerprints.
机译:在各种应用领域中对定位的需求以及在室内使用GPS的效率不足导致了室内定位系统的发展。移动用户和现代建筑的Wi-Fi基础设施最近的快速增长,使不同的方法可以用最少的投资来构建高性能的室内定位系统。本文提出了一种内置运行集成学习方法和人工神经网络的Android移动设备室内定位系统模型。通过使用内置传感器实现背景滤镜,可以增强系统性能。值得注意的是,提出的模型旨在逐渐收敛到位置,运行时间越长。对于小房间定位,它最终会产生95%的正确率,误差半径大约为0.5到1米,收敛时间最多为10秒。开发的模型可以离线运行,并且可以基于预构建的Wi-Fi指纹模型针对嵌入式系统和Android设备进行优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号