【24h】

An On-the-Fly Scheduling Strategy for Distributed Stream Processing Platform

机译:分布式流处理平台的实时调度策略

获取原文
获取原文并翻译 | 示例

摘要

Distributed stream processing can accomplish real-time processing of continuous streaming big data to obtain valuable information with high velocity. To maintain continuously stable and efficient running of stream applications, however, continuous online scheduling operations are required in the context of highly dynamic data stream. For this reason, this paper proposes the on-the-fly scheduling strategy in a distributed stream processing environment, which dynamically predicts abnormal events through double exponential smoothing and adopts traffic-aware active migration protocol to adjust the network routing structure on-the-fly to balance the inter-worker load. Moreover, an evaluation method is proposed to quantitatively analyze the various scheduling objectives. Finally, we commendably apply the scheduling strategy to a stream processing platform, which regards docker instance as basic scheduling units. Meanwhile, based on the platform and the evaluation method, we complete performance comparison experiments of the scheduling algorithm. The experimental results indicate that our algorithm has excellent performance in throughput of topology, average processing time and balance of task load, which is suitable for deployment in a distributed environment with large-scale nodes and tasks.
机译:分布式流处理可以完成连续流大数据的实时处理,从而获得有价值的信息。但是,为了保持流应用程序的持续稳定和高效运行,在高度动态的数据流的上下文中需要连续的在线调度操作。因此,本文提出了一种分布式流处理环境中的动态调度策略,该策略通过双指数平滑动态预测异常事件,并采用流量感知主动迁移协议来动态调整网络路由结构。平衡员工间的工作量。此外,提出了一种评估方法来定量分析各种调度目标。最后,值得称赞的是,将调度策略应用于流处理平台,该平台将docker实例作为基本调度单元。同时,基于平台和评估方法,完成了调度算法的性能比较实验。实验结果表明,该算法在拓扑吞吐率,平均处理时间和任务负载均衡方面具有优异的性能,适合在具有大规模节点和任务的分布式环境中部署。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号