首页> 外文会议>2017 International Multi-Conference on Engineering, Computer and Information Sciences >Image analysis methods in high-content screening for phenotypic drug discovery
【24h】

Image analysis methods in high-content screening for phenotypic drug discovery

机译:高水平筛选表型药物发现的图像分析方法

获取原文
获取原文并翻译 | 示例

摘要

High content screening (HCS) of microscopic images is a very active field in computational cell biology and a powerful technique to reveal how chemical, genetic, and environmental perturbations affect cellular state. HCS has been effectively used to study organelle morphology, drug discovery, signaling pathways, sub-cellular protein localization, and functional genomics. Hence, high content screening is a type of phenotypic screen conducted in cells. The increased throughput characteristic of HCS experiments is due to automation of sample handling and microscopy; the development of robotic controlled stage positioning, fluorescence filters, camera acquisition and auto-focusing. High-content screening microscopy experiments generally require some steps: sample preparation, image acquisition, image analysis, image data management and image analysis. Each processing stage poses a number of computational challenges. The success of any high-content screening-imaging experiment relies on thoughtful assay design and appropriate image analysis approaches. We have created a number of methods for evaluating cell toxicity to determine nuclear area and cell number, and plasma membrane permeability. Methods developed for the characterization of bone marrow fractions obtained by density gradient centrifugation, comprising determining cell size, toxicity, assessment of the Hoechst dynamics absorption by living bone marrow cells. To investigate the influence of various factors on cell migration and cell-cell interaction we developed high-content analysis wound healing assay leading to increased assay precision and accuracy. Methods for the intracellular reactive oxygen species dynamic have evaluated for drug-screening procedure for photosensitizing agents used in photodynamic therapy. HCS experiments can contain tens of thousands of images including millions of cells and researchers must utilize machine-learning algorithms to translate morphological features into meaningful biological information. Machine learning is widely used in image-based screening to classify cell morphologies. The principal objective of the screening is to determine whether an experimental perturbation leads to a cellular phenotype. The most commonly used machine-learning method, classification, is based on the definition of phenotypes by representative examples. Thus, before a screen can be conducted, for negative controls as well as for expected classes of phenotypes. If representative examples for phenotypes cannot be obtained, supervised machine learning is not applicable and unsupervised methods need to be used instead. Also among these analyses are machine-learning methods that encompass data-driven models for deep learning. By further improving the usability of software interfaces, machine learning could eventually facilitate assay development and increase processing throughput, accuracy and objectivity.
机译:显微镜图像的高内涵筛选(HCS)在计算细胞生物学中是一个非常活跃的领域,并且是一种揭示化学,遗传和环境扰动如何影响细胞状态的强大技术。 HCS已被有效地用于研究细胞器的形态,药物发现,信号传导途径,亚细胞蛋白定位和功能基因组学。因此,高含量筛选是在细胞中进行的一种表型筛选。 HCS实验增加的通量特性归因于样品处理和显微镜检查的自动化。机器人控制的舞台定位,荧光滤光片,相机采集和自动对焦的开发。高内涵筛选显微镜实验通常需要一些步骤:样品制备,图像采集,图像分析,图像数据管理和图像分析。每个处理阶段都会带来许多计算难题。任何高内涵筛选成像实验的成功都取决于周到的测定设计和适当的图像分析方法。我们创建了许多方法来评估细胞毒性,以确定核面积和细胞数以及质膜通透性。为表征通过密度梯度离心法获得的骨髓级分而开发的方法,包括确定细胞大小,毒性,评估活的骨髓细胞对Hoechst动力学的吸收。为了研究各种因素对细胞迁移和细胞间相互作用的影响,我们开发了高含量分析伤口愈合测定法,从而提高了测定的准确性和准确性。细胞内活性氧种类动态的方法已被评估用于光动力疗法中使用的光敏剂的药物筛选程序。 HCS实验可以包含数以万计的图像,包括数百万个细胞,研究人员必须利用机器学习算法将形态特征转化为有意义的生物学信息。机器学习在基于图像的筛选中广泛用于对细胞形态进行分类。筛选的主要目的是确定实验性干扰是否导致细胞表型。最常用的机器学习方法,分类,是基于表型的定义和代表性示例。因此,对于阴性对照以及预期的表型,在进行筛查之前。如果无法获得表型的代表性示例,则有监督的机器学习将不适用,而需要使用无监督的方法。这些分析中还包括机器学习方法,其中包括用于深度学习的数据驱动模型。通过进一步提高软件界面的可用性,机器学习最终可以促进测定法的开发并提高处理量,准确性和客观性。

著录项

  • 来源
  • 会议地点 Novosibirsk(RU)
  • 作者单位

    Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia Institute of Molecular Biology and Biophysics, Novosibirsk, Russia;

    Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, Novosibirsk Russia;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号