首页> 外文会议>2017 IEEE Workshop on Data Systems for Interactive Analysis >A progressive k-d tree for approximate k-nearest neighbors
【24h】

A progressive k-d tree for approximate k-nearest neighbors

机译:近似k最近邻居的渐进k-d树

获取原文
获取原文并翻译 | 示例

摘要

We present a progressive algorithm for approximate k-nearest neighbor search. Although the use of k-nearest neighbor libraries (KNN) is common in many data analysis methods, most KNN algorithms can only be run when the whole dataset has been indexed, i.e., they are not online. Even the few online implementations are not progressive in the sense that the time to index incoming data is not bounded and can exceed the latency required by progressive systems. This latency significantly restricts the interactivity of visualization systems especially when dealing with large-scale data. We improve traditional k-d trees for progressive approximate k-nearest neighbor search, enabling fast KNN queries while continuously indexing new batches of data when necessary. Following the progressive computation paradigm, our progressive k-d tree is bounded in time, allowing analysts to access ongoing results within an interactive latency. We also present performance benchmarks to compare online and progressive k-d trees.
机译:我们提出了一种近似k近邻搜索的渐进算法。尽管在许多数据分析方法中都使用k最近邻库(KNN),但是大多数KNN算法只能在对整个数据集进行索引后才能运行,即它们不在线。从索引进来数据的时间不受限制的意义上说,即使是很少的在线实现也不是渐进式的,并且可能超过渐进式系统所需的等待时间。这种延迟极大地限制了可视化系统的交互性,尤其是在处理大规模数据时。我们改进了传统的k-d树,以进行渐进的近似k最近邻居搜索,从而实现了快速的KNN查询,并在必要时连续索引新的数据批次。遵循渐进式计算范式,我们的渐进式k-d树在时间上是有界的,使分析人员可以在交互式延迟内访问正在进行的结果。我们还提出了性能基准,以比较在线和渐进式k-d树。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号