首页> 外文期刊>IEEE transactions on visualization and computer graphics >PANENE: A Progressive Algorithm for Indexing and Querying Approximate k-Nearest Neighbors
【24h】

PANENE: A Progressive Algorithm for Indexing and Querying Approximate k-Nearest Neighbors

机译:PANENE:用于索引和查询近似k最近邻居的渐进算法

获取原文
获取原文并翻译 | 示例

摘要

We present PANENE, a progressive algorithm for approximate nearest neighbor indexing and querying. Although the use of k-nearest neighbor (KNN) libraries is common in many data analysis methods, most KNN algorithms can only be queried when the whole dataset has been indexed, i.e., they are not online. Even the few online implementations are not progressive in the sense that the time to index incoming data is not bounded and cannot satisfy the latency requirements of progressive systems. This long latency has significantly limited the use of many machine learning methods, such as $t$t-SNE, in interactive visual analytics. PANENE is a novel algorithm for Progressive Approximate $k$k-NEarest NEighbors, enabling fast KNN queries while continuously indexing new batches of data. Following the progressive computation paradigm, PANENE operations can be bounded in time, allowing analysts to access running results within an interactive latency. PANENE can also incrementally build and maintain a cache data structure, a KNN lookup table, to enable constant-time lookups for KNN queries. Finally, we present three progressive applications of PANENE, such as regression, density estimation, and responsive $t$t-SNE, opening up new opportunities to use complex algorithms in interactive systems.
机译:我们提出了PANENE,这是一种用于近似最近邻居索引和查询的渐进算法。尽管在许多数据分析方法中都使用k最近邻(KNN)库,但是大多数KNN算法仅在对整个数据集进行索引后才能查询,即它们不在线。从索引进来数据的时间不受限制的意义上说,即使是少数几种在线实现也不是渐进式的,不能满足渐进式系统的延迟要求。如此长的延迟极大地限制了交互式视觉分析中许多机器学习方法的使用,例如$ t $ t-SNE。 PANENE是一种用于渐进近似$ k $ k-最远NEighbors的新颖算法,可在快速索引KNN查询的同时不断索引新一批数据。遵循渐进式计算范式,可以及时限制PANENE操作,使分析人员可以在交互式等待时间内访问运行结果。 PANENE还可以增量地构建和维护高速缓存数据结构,即KNN查找表,以对KNN查询启用恒定时间查找。最后,我们介绍了PANENE的三个渐进应用,例如回归,密度估计和响应式tt-tSNE,这为在交互式系统中使用复杂算法提供了新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号