首页> 外文会议>2017 IEEE Symposium on Privacy-Aware Computing >LinkedIn Salary: A System for Secure Collection and Presentation of Structured Compensation Insights to Job Seekers
【24h】

LinkedIn Salary: A System for Secure Collection and Presentation of Structured Compensation Insights to Job Seekers

机译:LinkedIn薪水:一种用于安全收集和向求职者呈现结构化薪酬见解的系统

获取原文
获取原文并翻译 | 示例

摘要

Online professional social networks such as LinkedIn have enhanced the ability of job seekers to discover and assess career opportunities, and the ability of job providers to discover and assess potential candidates. For most job seekers, salary (or broadly compensation) is a crucial consideration in choosing a new job. At the same time, job seekers face challenges in learning the compensation associated with different jobs, given the sensitive nature of compensation data and the dearth of reliable sources containing compensation data. Towards the goal of helping the world's professionals optimize their earning potential through salary transparency, we present LinkedIn Salary, a system for collecting compensation information from LinkedIn members and providing compensation insights to job seekers. We present the overall design and architecture, and describe the key components needed for the secure collection, de-identification, and processing of compensation data, focusing on the unique challenges associated with privacy and security. We perform an experimental study with more than one year of compensation submission history data collected from over 1.5 million LinkedIn members, thereby demonstrating the tradeoffs between privacy and modeling needs. We also highlight the lessons learned from the production deployment of this system at LinkedIn.
机译:像LinkedIn这样的在线专业社交网络增强了求职者发现和评估职业机会的能力,以及求职者发现和评估潜在候选人的能力。对于大多数求职者而言,薪水(或广义上的薪酬)是选择新工作的关键考虑因素。同时,鉴于薪酬数据的敏感性和缺乏包含薪酬数据的可靠来源,求职者在学习与不同工作相关的薪酬方面面临挑战。为了通过薪酬透明性帮助世界各地的专业人士优化他们的赚钱潜力,我们推出了LinkedIn Salary,这是一个用于从LinkedIn会员收集薪酬信息并向求职者提供薪酬见解的系统。我们介绍了总体设计和体系结构,并描述了安全收集,取消标识和处理补偿数据所需的关键组件,重点关注与隐私和安全性相关的独特挑战。我们使用超过150万个LinkedIn会员收集的超过一年的薪酬提交历史数据进行了一项实验研究,从而证明了隐私与建模需求之间的权衡。我们还将重点介绍从LinkedIn上该系统的生产部署中吸取的教训。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号