首页> 外文会议>2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management >Image retrieval for visual understanding in dynamic and sensor rich environments
【24h】

Image retrieval for visual understanding in dynamic and sensor rich environments

机译:图像检索可在动态和传感器丰富的环境中进行视觉理解

获取原文
获取原文并翻译 | 示例

摘要

Vision is vital to decision making, as humans naturally trust their eyes to enhance situation awareness. Yet the modern age has overwhelmed humans with massive amounts of visual information, which is problematic in time sensitive and mission critical situations, such as emergency management and disaster response. More efficient search and retrieval systems address some of these issues, which is why many seek to develop and extend Content Based Image Retrieval (CBIR) techniques to support situational awareness in a more autonomous fashion. However, there is currently no adequate system for CBIR to support situational awareness in dynamic and sensor rich environments. This research proposes an extensible framework for CBIR to support a holistic understanding of the environment through the automated search and retrieval of relevant images and the context of their capture. This constitutes assisted CBIR as embodied in the multi-sensor assisted CBIR system (MSACS). We design the MSACS framework and implement the core CBIR system of MSACS using the state of the art Bag of Visual Words paradigm. The system is evaluated using a dataset of GPS tagged images to show favorable precision and recall of spatially related images. Applications for localization and search for Wi-Fi access points demonstrate improved situational awareness using the system. Assisted CBIR could enable vision based understanding of an environment to ease the burdens of information overload and increase human confidence in autonomous systems.
机译:视觉对于决策至关重要,因为人类自然会相信自己的眼睛以增强态势感知能力。然而,现代时代给人类带来了大量的视觉信息,这在时间紧迫和任务关键的情况下(例如应急管理和灾难响应)是有问题的。效率更高的搜索和检索系统解决了其中一些问题,这就是为什么许多人寻求开发和扩展基于内容的图像检索(CBIR)技术以更自治的方式支持态势感知的原因。但是,当前没有足够的CBIR系统来支持动态和传感器丰富的环境中的态势感知。这项研究为CBIR提出了一个可扩展的框架,以通过自动搜索和检索相关图像及其捕获的上下文来支持对环境的整体理解。这构成了多传感器辅助CBIR系统(MSACS)中体现的辅助CBIR。我们设计了MSACS框架,并使用最新版的Visual Words范例实现了MSACS的核心CBIR系统。使用GPS标记图像的数据集对系统进行评估,以显示出良好的精度和空间相关图像的召回率。本地化和搜索Wi-Fi接入点的应用程序证明了使用该系统提高了态势感知能力。辅助的CBIR可以实现对环境的基于视觉的理解,从而减轻信息过载的负担,并增强人们对自治系统的信心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号