首页> 外文学位 >Automated Image Intelligence Adaptive Sensor Management System for High Altitude Long Endurance UAVs in a Dynamic and Anti-Access Area Denial Environment.
【24h】

Automated Image Intelligence Adaptive Sensor Management System for High Altitude Long Endurance UAVs in a Dynamic and Anti-Access Area Denial Environment.

机译:在动态和反访问区域拒绝环境中的高海拔长寿命无人机的自动图像智能自适应传感器管理系统。

获取原文
获取原文并翻译 | 示例

摘要

The problem we investigate deals with an Image Intelligence (IMINT) sensor allocation schedule for High Altitude Long Endurance UAVs in a dynamic and Anti-Access Area Denial (A2AD) environment. The objective is to maximize the Situational Awareness (SA) of decision makers. The value of SA can be improved in two different ways. First, if a sensor allocated to an Areas of Interest (AOI) detects target activity, then the SA value will be increased. Second, the SA value increases if an AOI is monitored for a certain period of time, regardless of target detections. These values are functions of the sensor allocation time, sensor type and mode. Relatively few studies in the archival literature have been devoted to an analytic, detailed explanation of the target detection process, and AOI monitoring value dynamics. These two values are the fundamental criteria used to choose the most judicious sensor allocation schedule. This research presents mathematical expressions for target detection processes, and shows the monitoring value dynamics. Furthermore, the dynamics of target detection is the result of combined processes between belligerent behavior (target activity) and friendly behavior (sensor allocation). We investigate these combined processes and derive mathematical expressions for simplified cases. These closed form mathematical models can be used for Measures of Effectiveness (MOEs), i.e., target activity detection to evaluate sensor allocation schedules. We also verify these models with discrete event simulations which can also be used to describe more complex systems. We introduce several methodologies to achieve a judicious sensor allocation schedule focusing on the AOI monitoring value. The first methodology is a discrete time integer programming model which provides an optimal solution but is impractical for real world scenarios due to its computation time. Thus, it is necessary to trade off the quality of solution with computation time. The Myopic Greedy Procedure (MGP) is a heuristic which chooses the largest immediate unit time return at each decision epoch. This reduces computation time significantly, but the quality of the solution may be only 95% of optimal (for small size problems). Another alternative is a multi-start random constructive Hybrid Myopic Greedy Procedure (H-MGP), which incorporates stochastic variation in choosing an action at each stage, and repeats it a predetermined number of times (roughly 99.3% of optimal with 1000 repetitions). Finally, the One Stage Look Ahead (OSLA) procedure considers all the 'top choices' at each stage for a temporary time horizon and chooses the best action (roughly 98.8% of optimal with no repetition). Using OSLA procedure, we can have ameliorated solutions within a reasonable computation time. Other important issues discussed in this research are methodologies for the development of input parameters for real world applications.
机译:我们研究的问题涉及在动态和反访问区域拒绝(A2AD)环境中针对高海拔长寿命无人机的图像智能(IMINT)传感器分配计划。目的是使决策者的情境意识(SA)最大化。可以通过两种不同的方式来提高SA的价值。首先,如果分配给关注区域(AOI)的传感器检测到目标活动,则SA值将增加。其次,如果在特定时间段内监视AOI,则无论目标检测如何,SA值都会增加。这些值是传感器分配时间,传感器类型和模式的函数。档案文献中相对较少的研究致力于目标检测过程的分析,详细解释以及AOI监视值动态。这两个值是用于选择最明智的传感器分配计划的基本标准。这项研究提出了目标检测过程的数学表达式,并显示了监控值动态。此外,目标检测的动力学是好战行为(目标活动)和友好行为(传感器分配)之间组合过程的结果。我们研究了这些组合过程,并得出了简化案例的数学表达式。这些封闭形式的数学模型可用于有效性度量(MOE),即目标活动检测以评估传感器分配计划。我们还使用离散事件仿真验证了这些模型,这些仿真也可以用于描述更复杂的系统。我们介绍几种方法来实现针对AOI监控值的明智的传感器分配计划。第一种方法是离散时间整数编程模型,该模型提供了最佳解决方案,但由于其计算时间而在现实世界中不切实际。因此,有必要在解决方案质量与计算时间之间进行权衡。近视贪婪程序(MGP)是一种启发式方法,它在每个决策时期选择最大的即时单位时间回报。这样可以显着减少计算时间,但是解决方案的质量可能仅为最佳解决方案的95%(对于小尺寸问题)。另一种替代方法是多起点随机构造性混合近视贪婪过程(H-MGP),该过程在选择每个阶段的动作时包含了随机变化,并重复了预定的次数(大约有1000次重复的最优次数为99.3%)。最后,“一步一步向前看”(OSLA)程序会考虑每个阶段在临时时间范围内的所有“首要选择”,并选择最佳操作(大约无重复的最佳操作的98.8%)。使用OSLA程序,我们可以在合理的计算时间内改进解决方案。本研究中讨论的其他重要问题是为实际应用程序开发输入参数的方法。

著录项

  • 作者

    Kim, Gi Young.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Operations research.;Aerospace engineering.;Industrial engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号