首页> 外文期刊>Software, practice & experience >An efficient radix trie-based semantic visual indexing model for large-scale image retrieval in cloud environment
【24h】

An efficient radix trie-based semantic visual indexing model for large-scale image retrieval in cloud environment

机译:基于基于基于Radix的基于Radix的语义视觉索引模型,用于云环境中的大型图像检索

获取原文
获取原文并翻译 | 示例

摘要

In recent years, massive growth in the number of images on the web has raised the requirement of developing an effective indexing model to search digital images from a large-scale database. Though cloud service offers effective indexing of compressed images, it remains a major issue due to the semantic gap between the user query and diverse semantics of large-scale database. This article presents a radix trie indexing (RTI) model based on semantic visual indexing for retrieving the images from cloud platforms. Initially, an interactive optimization model is applied to identify the joint semantic and visual descriptor space. Next, an RTI model is applied to integrate the semantic visual joint space model for finding an effective solution for searching large-scale sized dataset. Finally, a Spark distributed model is applied for deploying the online image retrieval service. The performance of the proposed method is validated on two standard dataset, namely, Holidays 1 M and Oxford 5 K in terms of mean average precision (mAP) and processing time under varying dataset sizes. During experimentation, the presented RTI model shows the maximum mAP value of 0.83 under the dataset size of 1000. Similarly, under the sample count of 1000, it is noted that the standalone server requires a maximum of 118 minutes to complete the process, whereas the spark cluster requires a minimum of around only 19 minutes to finish the process. The experimental outcome showed improvement in terms of various measures over the best rivals in the literature.
机译:近年来,网络上的图像数量的大规模增长提出了开发有效索引模型的要求,以从大规模数据库搜索数字图像。虽然云服务提供了有效的压缩图像索引,但由于大规模数据库的用户查询和不同语义之间的语义差距,它仍然是一个主要问题。本文介绍了基于语义视觉索引的基于语义视觉索引,用于从云平台检索图像。最初,应用交互式优化模型来标识联合语义和视觉描述符空间。接下来,应用RTI模型来集成语义视觉联合空间模型,以查找搜索大型尺寸数据集的有效解决方案。最后,应用了火花分布式模型来部署在线图像检索服务。在两个标准数据集中,即在平均平均精度(MAP)和不同数据集大小下的处理时间方面,所提出的方法的性能在两个标准数据集中验证,即假期1 M和牛津5k。在实验期间,所呈现的RTI模型显示在数据集大小为1000的最大映射值0.83。类似,在1000的样本计数下,应注意,独立服务器最多需要118分钟才能完成该过程,而是Spark Cluster至少需要19分钟即可完成此过程。实验结果表明,在文献中最好的竞争对手的各种措施方面表现出改善。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号