首页> 外文会议>2017 IEEE Automatic Speech Recognition and Understanding Workshop >Leveraging native language speech for accent identification using deep Siamese networks
【24h】

Leveraging native language speech for accent identification using deep Siamese networks

机译:利用深度暹罗网络利用母语语音进行口音识别

获取原文
获取原文并翻译 | 示例

摘要

The problem of automatic accent identification is important for several applications like speaker profiling and recognition as well as for improving speech recognition systems. The accented nature of speech can be primarily attributed to the influence of the speaker's native language on the given speech recording. In this paper, we propose a novel accent identification system whose training exploits speech in native languages along with the accented speech. Specifically, we develop a deep Siamese network based model which learns the association between accented speech recordings and the native language speech recordings. The Siamese networks are trained with i-vector features extracted from the speech recordings using either an unsupervised Gaussian mixture model (GMM) or a supervised deep neural network (DNN) model. We perform several accent identification experiments using the CSLU Foreign Accented English (FAE) corpus. In these experiments, our proposed approach using deep Siamese networks yield significant relative performance improvements of 15.4% on a 10-class accent identification task, over a baseline DNN-based classification system that uses GMM i-vectors. Furthermore, we present a detailed error analysis of the proposed accent identification system.
机译:自动重音识别的问题对于诸如说话人轮廓和识别之类的若干应用以及改善语音识别系统而言很重要。语音的重音本质可以主要归因于说话者的母语对给定语音记录的影响。在本文中,我们提出了一种新颖的口音识别系统,该系统的训练利用了母语语音和重音。具体来说,我们开发了一个基于深度暹罗网络的模型,该模型学习了重音语音录音和母语语音录音之间的关联。使用无监督的高斯混合模型(GMM)或有监督的深度神经网络(DNN)模型,使用从语音记录中提取的i矢量特征来训练暹罗网络。我们使用CSLU外国重音英语(FAE)语料库进行了几个口音识别实验。在这些实验中,与使用GMM i-vector的基于DNN的基础分类系统相比,我们使用深层暹罗网络的拟议方法在10类重音识别任务上的相对性能显着提高了15.4%。此外,我们对提出的口音识别系统进行了详细的错误分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号