首页> 外文会议>2017 IEEE Automatic Speech Recognition and Understanding Workshop >Speech recognition challenge in the wild: Arabic MGB-3
【24h】

Speech recognition challenge in the wild: Arabic MGB-3

机译:野外语音识别挑战:阿拉伯语MGB-3

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the Arabic MGB-3 Challenge - Arabic Speech Recognition in the Wild. Unlike last year's Arabic MGB-2 Challenge, for which the recognition task was based on more than 1,200 hours broadcast TV news recordings from Aljazeera Arabic TV programs, MGB-3 emphasises dialectal Arabic using a multi-genre collection of Egyptian YouTube videos. Seven genres were used for the data collection: comedy, cooking, family/kids, fashion, drama, sports, and science (TEDx). A total of 16 hours of videos, split evenly across the different genres, were divided into adaptation, development and evaluation data sets. The Arabic MGB-Challenge comprised two tasks: A) Speech transcription, evaluated on the MGB-3 test set, along with the 10 hour MGB-2 test set to report progress on the MGB-2 evaluation; B) Arabic dialect identification, introduced this year in order to distinguish between four major Arabic dialects - Egyptian, Levantine, North African, Gulf, as well as Modern Standard Arabic. Two hours of audio per dialect were released for development and a further two hours were used for evaluation. For dialect identification, both lexical features and i-vector bottleneck features were shared with participants in addition to the raw audio recordings. Overall, thirteen teams submitted ten systems to the challenge. We outline the approaches adopted in each system, and summarise the evaluation results.
机译:本文介绍了阿拉伯语MGB-3挑战-野外阿拉伯语语音识别。与去年的阿拉伯MGB-2挑战赛不同,MGB-3的识别任务基于来自Aljazeera阿拉伯电视节目的1200多小时广播电视新闻记录,而MGB-3则使用埃及YouTube视频的多种流派来强调方言阿拉伯语。数据收集使用了七种类型:喜剧,烹饪,家庭/儿童,时装,戏剧,体育和科学(TEDx)。总共16个小时的视频,平均分为不同类型,分为适应性,发展性和评估性数据集。阿拉伯语MGB挑战包括两个任务:A)语音转录,在MGB-3测试仪上进行评估,以及10小时的MGB-2测试仪以报告MGB-2评估的进度; B)阿拉伯方言识别,于今年推出,以区分四种主要的阿拉伯方言-埃及,黎凡特,北非,海湾以及现代标准阿拉伯语。每个方言释放了两个小时的音频用于开发,另外两个小时用于评估。对于方言识别,除了原始音频记录外,还与参与者共享了词汇特征和i-vector瓶颈特征。总体而言,有13个团队向挑战赛提交了10个系统。我们概述了每个系统中采用的方法,并总结了评估结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号