首页> 外文会议>2017 Hands-free Speech Communications and Microphone Arrays >Discriminative non-negative matrix factorization with majorization-minimization
【24h】

Discriminative non-negative matrix factorization with majorization-minimization

机译:带有最小化的判别式非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Non-negative matrix factorization (NMF) is a powerful approach to single channel audio source separation. In a supervised setting, NMF is first applied to train the basis spectra of each sound source. At test time, NMF is applied to the spectrogram of a mixture signal using the pretrained spectra. The source signals can then be separated out using a Wiener filter. A typical way to train the basis spectra of each source is to minimize the objective function of NMF. However, the basis spectra obtained in this way do not ensure that the separated signal will be optimal at test time due to the inconsistency between the objective functions for training and separation (Wiener filtering). To address this, a framework called discriminative NMF (DNMF) has recently been proposed. In in this work a multiplicative update algorithm was proposed for the basis training, however one drawback is that the convergence is not guaranteed. To overcome this drawback, this paper proposes using a majorization-minimization principle to develop a convergence-guaranteed algorithm for DNMF. Experimental results showed that the proposed algorithm outperformed standard NMF and DNMF using a multiplicative update algorithm as regards both the signal-to-distortion and signal-to-interference ratios.
机译:非负矩阵分解(NMF)是用于单通道音频源分离的强大方法。在有监督的设置中,首先应用NMF训练每个声源的基础频谱。在测试时,使用预训练的光谱将NMF应用于混合信号的光谱图。然后可以使用维纳滤波器将源信号分离出来。训练每个光源基本光谱的一种典型方法是最小化NMF的目标函数。但是,由于用于训练和分离(维纳滤波)的目标函数之间的不一致,以这种方式获得的基本光谱不能确保分离的信号在测试时将是最佳的。为了解决这个问题,最近提出了一种称为判别性NMF(DNMF)的框架。在这项工作中,提出了一种用于基础训练的乘法更新算法,但是一个缺点是不能保证收敛。为了克服这个缺点,本文提出了使用最小化最大化原则来开发用于DNMF的收敛保证算法。实验结果表明,在信噪比和信噪比方面,该算法均采用乘性更新算法优于标准NMF和DNMF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号