首页> 外文会议>2017 Evolving and Adaptive Intelligent Systems >Introduction of adaptive TS model using recursive Gustafson-Kessel algorithm in short term load forecasting
【24h】

Introduction of adaptive TS model using recursive Gustafson-Kessel algorithm in short term load forecasting

机译:在短期负荷预测中引入使用递归Gustafson-Kessel算法的自适应TS模型

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces adaptive TS model developed with upgraded recursive Gustafson-Kessel (rGK) clustering in the field of short-term load forecasting (STLF), which is one of the most essential parts for electrical distributors. The problem of STLF is to forecast load consumption for a day ahead based on the weather forecast and the type of the day. Until now, most of the forecasting methods based on fuzzy logic needed a lot of expert knowledge to build and adapt the model, where rGK clustering lowers the need of this expert knowledge because of the automatic partitioning of the domain. In addition to rGK clustering, proposed solution also moves from directly forecasting the average load to forecasting the change of load from current to the next day, which is the fastest way to adapt the model to the change in electrical load system. To improve domain separation of clustering, improved membership function based both on input and output distance is also proposed.
机译:本文介绍了在短期负荷预测(STLF)领域中通过升级的递归Gustafson-Kessel(rGK)聚类开发的自适应TS模型,该模型是配电设备中最重要的部分。 STLF的问题是根据天气预报和一天的类型来预测未来一天的负载消耗。到目前为止,大多数基于模糊逻辑的预测方法都需要大量专家知识来构建和调整模型,其中rGK聚类由于领域的自动划分而降低了对专家知识的需求。除了rGK聚类之外,提出的解决方案还从直接预测平均负载转变为预测从当前到第二天的负载变化,这是使模型适应电力负载系统变化的最快方法。为了改善聚类的域分离,还提出了基于输入和输出距离的改进的隶属度函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号