首页> 外文会议>2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops >Graph-Based Ranking on Chinese Product Features with a General Structure for Noun Phrases
【24h】

Graph-Based Ranking on Chinese Product Features with a General Structure for Noun Phrases

机译:基于图的汉语产品特征名词短语总体结构排名

获取原文
获取原文并翻译 | 示例

摘要

For Chinese product feature extraction, we use a general structure (BaseNP) for noun phrases, aiming to cover more product features. To rank the extracted feature candidates, we use a modified co-ranking model to rank feature candidates and opinion candidates simultaneously. For two types of nodes (emph{feature candidates} and emph{opinion candidates}), the model integrates mutual reinforcement between heterogeneous nodes and intra-class propagation within homogenous nodes.Experimental results show that that BaseNP structures cover more product features, and the modified co-ranking model obtains encouraging performance through mutual reinforcement and intra-class propagation.
机译:对于中文产品特征提取,我们对名词短语使用通用结构(BaseNP),旨在涵盖更多产品特征。为了对提取的特征候选进行排名,我们使用一种改进的联合排名模型对特征候选和意见候选同时进行排名。对于两种类型的节点(emph {特征候选者}和emph {opinion候选者}),该模型集成了异类节点之间的互增强和同质节点内的类内传播。实验结果表明,BaseNP结构涵盖了更多的产品特征,并且改进的联合排序模型通过相互增强和类内传播获得令人鼓舞的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号