首页> 外文会议>2016 22nd Annual International Conference on Advanced Computing and Communication >Stock Market Prediction Using Optimum Threshold Based Relevance Vector Machines
【24h】

Stock Market Prediction Using Optimum Threshold Based Relevance Vector Machines

机译:使用基于最佳阈值的关联向量机的股市预测

获取原文
获取原文并翻译 | 示例

摘要

Machine learning is employed for myriad of applications ranging from engineering to non-engineering, medical to finance, sports to studies and many more. The huge demand for machine learning has spearheaded various techniques such as Hidden Markov Models (HMM), Artificial Neural Networks(ANN), Support Vector Machines (SVM), Relevance Vector Machines (RVM) and many more. It is well reported in literature that RVM outperforms SVM interms of sparseness as well as accuracy and hence the same is employed for the proposed work. In this paper, stock market prediction using optimum threshold based RVM is reported and its performance is evaluated using given input parameters for share market. In order to assess the performance of the proposed system, datasets from the following four stock exchanges are considered for evaluation, which includes NASDAQ, National Security Exchange (NSE), New York Stock Exchange (NYSE) and London Stock Exchange (LSE). It is observed that 19.17 - 83.33% of relevance vectors are pruned on using the proposed optimum threshold based RVM technique. Also a user friendly Graphical user interface is developed for the proposed work, which can be easily extended for various other machine learning applications too.
机译:机器学习用于从工程到非工程,从医学到金融,从运动到学习等众多应用。机器学习的巨大需求带动了各种技术,例如隐马尔可夫模型(HMM),人工神经网络(ANN),支持向量机(SVM),相关向量机(RVM)等。据文献报道,在稀疏度和准确性方面,RVM优于SVM,因此在建议的工作中使用RVM。在本文中,报告了使用基于最佳阈值的RVM进行的股市预测,并使用给定的股市输入参数评估了其表现。为了评估所提议系统的性能,考虑对以下四个证券交易所的数据集进行评估,其中包括纳斯达克,国家安全交易所(NSE),纽约证券交易所(NYSE)和伦敦证券交易所(LSE)。可以看出,使用建议的基于最佳阈值的RVM技术,修剪了相关向量的19.17-83.33%。还为拟议的工作开发了用户友好的图形用户界面,该界面也可以轻松扩展为各种其他机器学习应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号