首页> 外文会议>2015 International Conference on Soft Computing Techniques and Implementations >Optimal tuning of PID controller using GWO algorithm for speed control in DC motor
【24h】

Optimal tuning of PID controller using GWO algorithm for speed control in DC motor

机译:基于GWO算法的PID控制器在直流电机速度控制中的优化调节。

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a bio-inspired meta-heuristic soft computing method to optimize the performance of a PID controller used in DC motor speed control. APID controller is designed for an adopted second order DC motor system and the evolutionary algorithm based on Grey Wolf Optimizer is used to optimize the controller. In MATLAB/Simulink environment, the best set of PID parameters thus obtained from the optimization are used with a step input to the DC motor to get the transient response specifications such as rise time, settling time, maximum over shoot and steady state error. These results are then compared with results from other conventional techniques and soft computing methods to look for the most efficient method to get best transient response in a DC Motor.
机译:本文介绍了一种生物启发式的元启发式软计算方法,以优化用于直流电动机速度控制的PID控制器的性能。针对所采用的二阶直流电动机系统设计了APID控制器,并使用基于Gray Wolf Optimizer的进化算法对控制器进行了优化。在MATLAB / Simulink环境中,从优化中获得的最佳PID参数集与输入到直流电动机的阶跃一起使用,以获取瞬态响应规范,例如上升时间,稳定时间,最大过冲和稳态误差。然后将这些结果与其他常规技术和软计算方法的结果进行比较,以寻找最有效的方法来获得直流电动机中的最佳瞬态响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号