首页> 外文会议>2015 2nd World Symposium on Web Applications and Networking >Towards knowledge creation and management model over online social networks
【24h】

Towards knowledge creation and management model over online social networks

机译:建立在线社交网络上的知识创造和管理模型

获取原文
获取原文并翻译 | 示例

摘要

An online Social network (OSNs) is an active platform of user socialization belonging to different societies and has a subject of interest for researchers. In OSNs, relationships among users and groups are created to share information; and turned out a foundation of knowledge. However, user-generated contents are disseminated, unstructured, and dynamic in nature. As there is no central authority to own and maintain these large numbers of user-generated contents, it is difficult to process and extract knowledge from it. Moreover, it is far challenging to collect, manage, and classify randomly transmitted useful contents and to associate them for the creation of knowledge. Further, in complex networks where graph nodes belong to more than one context or groups, ubiquitous community detection is more challenging in such scattered data formats. In this paper, a model for knowledge creation over online social networks has been presented. The model explores the strength of social relationship, users' online behavior by their interests and hobbies, and the frequency of users participated together in a particular context. It helps in smoother collaboration among users and groups, enhance learning by sharing information, and improve efficiency of the social graphs for community detection. Moreover, based on the available information in different context, the model facilitates efficient decisions, knowledge and innovations in OSNs.
机译:在线社交网络(OSN)是属于不同社会的活跃的用户社交化平台,并且是研究人员感兴趣的主题。在OSN中,创建用户和组之间的关系以共享信息。并成为知识的基础。但是,用户生成的内容本质上是散布的,非结构化的和动态的。由于没有中央机构拥有和维护大量用户生成的内容,因此很难从中处理和提取知识。此外,收集,管理和分类随机传输的有用内容并将其关联以创建知识,这仍然是极富挑战性的。此外,在图节点属于多个上下文或组的复杂网络中,在这种分散的数据格式中,普遍存在的社区检测更具挑战性。在本文中,提出了一种在线社交网络上知识创造的模型。该模型探讨了社交关系的强度,用户的兴趣和爱好所产生的在线行为以及在特定情况下用户共同参与的频率。它有助于在用户和组之间进行更顺畅的协作,通过共享信息来增强学习,并提高用于社区检测的社交图谱的效率。此外,基于不同上下文中的可用信息,该模型有助于OSN中的有效决策,知识和创新。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号