首页> 外文会议>2014 IEEE Workshop on Statistical Signal Processing >An improved Bayesian inversion method for the estimation of multimodal particle size distributions using multiangle Dynamic Light Scattering measurements
【24h】

An improved Bayesian inversion method for the estimation of multimodal particle size distributions using multiangle Dynamic Light Scattering measurements

机译:一种改进的贝叶斯反演方法,用于利用多角度动态光散射测量估算多峰粒度分布

获取原文
获取原文并翻译 | 示例

摘要

An improved and robust Bayesian method is proposed to estimate the number-weighted Particle Size-Distributions (PSD) from data obtained by Multiangle Dynamic Light Scattering (MDLS). Compared to former approach presented by Clementi, the originality of our method lies in the fact that it is directly applied to raw MDLS data without any preprocessing. Indeed, the PSD Bayesian estimation proposed by Clementi requires the prior evaluation of the harmonic intensity averaged particle diameters at different angles by means of the cumulants method. The spreading of the estimation errors is inherent in this method which makes the multimodal PSD estimation worsens. The efficiency and robustness of the method proposed are evaluated through simulated and experimental data. Comparisons with the Clementi method are also presented. We show an improvement of the resolution and the repeatability, and a better correlation between our results and the original distributions.
机译:提出了一种改进的鲁棒贝叶斯方法,用于从通过多角度动态光散射(MDLS)获得的数据中估计数字加权粒度分布(PSD)。与Clementi提出的先前方法相比,我们方法的独创性在于它无需任何预处理即可直接应用于原始MDLS数据。实际上,Clementi提出的PSD贝叶斯估计需要通过累积量方法预先评估不同角度的谐波强度平均粒径。估计误差的扩散是该方法固有的,这会使多峰PSD估计恶化。通过仿真和实验数据评估了所提出方法的效率和鲁棒性。还介绍了与Clementi方法的比较。我们显示出分辨率和可重复性方面的改进,并且结果与原始分布之间具有更好的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号