首页> 外文会议>2014 First International Image Processing, Applications and Systems Conference >Texture analysis of lace images using histogram and local binary patterns under rotation variation
【24h】

Texture analysis of lace images using histogram and local binary patterns under rotation variation

机译:旋转变化下基于直方图和局部二值模式的花边图像纹理分析

获取原文
获取原文并翻译 | 示例

摘要

The images of lace textile are particularly difficult to be analyzed in digital form using classical image processing techniques. The major reasons of this difficulty emerge from the complex nature of lace which generally has different textures in its constituents like the background and patterns. In this paper, we study the behavior of Image Histogram (HistI) and Local Binary Patterns (LBP) on image extracts of lace in presence and absence of rotation. We further evaluate two variants of LBP; primarily the LBP Histogram (LBPB) and secondly the Fourier Transform applied on the LBP Histogram (LBPFFT). Consequently, we analyze the contribution of data fusion on feature level and score level in the different experimentations. The classification rate evaluates the discrimination degree of each descriptor via the k nearest neighbors kNN classifier. Experimental results indicate that the LBPB, LBPFFT and HistI combined at score level generate the better performance in absence of transformations. Whereas, LBPFFT and HistI combined at the same level generate the better classification rate, in the presence of rotation.
机译:花边纺织品的图像尤其难以使用经典图像处理技术以数字形式进行分析。造成这种困难的主要原因是花边的复杂性,花边的成分通常具有不同的质地,例如背景和图案。在本文中,我们研究了在有无旋转的情况下,图像直方图(HistI)和局部二值模式(LBP)在花边图像提取上的行为。我们进一步评估了LBP的两个变体。首先是LBP直方图(LBPB),其次是对LBP直方图(LBPFFT)进行的傅立叶变换。因此,我们分析了不同实验中数据融合对特征水平和得分水平的贡献。分类率通过k个最近邻kNN分类器评估每个描述符的鉴别度。实验结果表明,在不进行转换的情况下,以得分水平组合的LBPB,LBPFFT和HistI会产生更好的性能。而在旋转的情况下,以相同级别组合的LBPFFT和HistI会产生更好的分类率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号