首页> 外文会议>2013 IEEE Workshop on Applications of Computer Vision. >Ridge Regression based classifiers for large scale class imbalanced datasets
【24h】

Ridge Regression based classifiers for large scale class imbalanced datasets

机译:大规模分类不平衡数据集的基于岭回归的分类器

获取原文
获取原文并翻译 | 示例

摘要

Large scale, class imbalanced data classification is a challenging task that occurs frequently in several computer vision tasks such as web video retrieval. A number of algorithms have been proposed in literature that approach this problem from different perspectives (e.g. Sampling, Cost-sensitive learning, Active learning). The challenge is two fold in this task — first the data imbalance causes many classification algorithms to learn trivial classifiers that declare all test examples to be from the majority class. Second, many algorithms do not scale to large dataset sizes. We address these two issues by using two different cost-sensitive versions of Ridge Regression as our binary classifiers. We demonstrate our approach for retrieving unstructured web videos from 10 events on the benchmark TRECVID MED 12 dataset containing ≈47000 videos. We empirically show that they perform at par with state-of-the-art support vector machine based classifiers using χ2 kernels while being 30 to 60 times faster.
机译:大规模,类别不平衡的数据分类是一项艰巨的任务,在一些计算机视觉任务(如网络视频检索)中经常发生。文献中已经提出了许多算法,它们从不同的角度来解决这个问题(例如,抽样,成本敏感型学习,主动学习)。这项任务面临两个挑战-首先,数据不平衡导致许多分类算法学习琐碎的分类器,这些分类器声明所有测试示例均来自多数类。其次,许多算法无法扩展到大型数据集。我们通过使用两个不同的成本敏感版本的Ridge回归作为我们的二进制分类器来解决这两个问题。我们演示了从包含约47000个视频的基准TRECVID MED 12数据集中的10个事件中检索非结构化网络视频的方法。我们根据经验表明,它们与使用χ 2 内核的基于最新支持向量机的分类器性能相当,而速度却提高了30至60倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号