首页> 外文会议>2013 IEEE International Multi Conference on Automation, Computing, Control, Communication and Compressed Sensing >Optimal location and sizing of DG and capacitor in distribution network using Weight-Improved Particle Swarm Optimization Algorithm (WIPSO)
【24h】

Optimal location and sizing of DG and capacitor in distribution network using Weight-Improved Particle Swarm Optimization Algorithm (WIPSO)

机译:使用权重改进的粒子群优化算法(WIPSO)优化配电网中DG和电容器的位置和尺寸

获取原文
获取原文并翻译 | 示例

摘要

The real and reactive power service by local devices plays an important role in continuous electric energy supply and energy management of the distribution system under peak load or over load conditions. The compensating devices are greatly utilized to provide the necessary real and reactive power support and to share the peak load demand. This paper presents optimal location and sizing of Distributed Generation (DG) and capacitor in distribution network to provide the necessary active and reactive power support, to minimize the system real and reactive power loss and to maintain the network voltage level within a desired range. The main objective of this paper is to minimize the cost of service provided by these local devices. This paper proposes Weight-Improved Particle Swarm Optimization Algorithm (WIPSO) for optimal location and sizing of compensating devices. The proposed method is efficiently examined in test system and comparative studies before and after installation of Distributed Generators and capacitors is made. Results illustrates improvement in network voltage profile, reduction in system real and reactive power loss and reduction in cost of service provided by these local devices.
机译:在峰值负载或过载条件下,本地设备的有功和无功功率服务在配电系统的连续电能供应和能源管理中起着重要作用。补偿设备被大量利用,以提供必要的有功和无功功率支持,并共享峰值负载需求。本文介绍了配电网中分布式发电(DG)和电容器的最佳位置和大小,以提供必要的有功和无功功率支持,以最大程度地减小系统的有功和无功功率损耗,并将网络电压水平维持在所需范围内。本文的主要目的是最小化这些本地设备提供的服务成本。针对补偿装置的最优位置和尺寸,提出了一种权重改进的粒子群优化算法(WIPSO)。在制造分布式发电机和电容器前后,在测试系统和比较研究中对提出的方法进行了有效的检查。结果表明,这些本地设备可改善网络电压曲线,减少系统有功和无功损耗,并降低服务成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号