首页> 外文会议>2013 IEEE Conference on Computatonal Intelligence in Games >Opponent modeling with incremental active learning: A case study of Iterative Prisoner's Dilemma
【24h】

Opponent modeling with incremental active learning: A case study of Iterative Prisoner's Dilemma

机译:具有增量主动学习的对手建模:迭代囚徒困境的案例研究

获取原文
获取原文并翻译 | 示例

摘要

What's the most important sources of information to guess the internal strategy of your opponents? The best way is to play games against them and infer their strategy from the experience. For novice players, they should play lot of games to identify other's strategy successfully. However, experienced players usually play small number of games to model other's strategy. The secret is that they intelligently design their plays to maximize the chance of discovering the most uncertain parts. Similarly, in this paper, we propose to use an incremental active learning for modeling opponents. It refines the other's models incrementally by cycling “estimation (inference)“ and “exploration (playing games)” steps. Experimental results with Iterative Prisoner's Dilemma games show that the proposed method can reveal other's strategy successfully.
机译:猜测对手的内部策略最重要的信息来源是什么?最好的方法是对他们玩游戏,并根据经验推断他们的策略。对于新手玩家,他们应该玩很多游戏以成功确定他人的策略。但是,经验丰富的玩家通常会玩少量游戏来模仿他人的策略。秘密在于,他们会聪明地设计自己的游戏,以最大程度地发现最不确定的部分。同样,在本文中,我们建议使用增量主动学习对对手进行建模。它通过循环“估计(推断)”和“探索(玩游戏)”步骤来逐步完善其他模型。迭代囚徒困境游戏的实验结果表明,该方法可以成功地揭示他人的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号