首页> 外文会议>2012 SC Companion: High Performance Computing, Networking, Storage and Analysis. >Executing Optimized Irregular Applications Using Task Graphs within Existing Parallel Models
【24h】

Executing Optimized Irregular Applications Using Task Graphs within Existing Parallel Models

机译:使用现有并行模型中的任务图执行优化的不规则应用程序

获取原文
获取原文并翻译 | 示例

摘要

Many sparse or irregular scientific computations are memory bound and benefit from locality improving optimizations such as blocking or tiling. These optimizations result in asynchronous parallelism that can be represented by arbitrary task graphs. Unfortunately, most popular parallel programming models with the exception of Threading Building Blocks (TBB) do not directly execute arbitrary task graphs. In this paper, we compare the programming and execution of arbitrary task graphs qualitatively and quantitatively in TBB, the OpenMP doall model, the OpenMP 3.0 task model, and Cilk Plus. We present performance and scalability results for 8 and 40 core shared memory systems on a sparse matrix iterative solver and a molecular dynamics benchmark.
机译:许多稀疏或不规则的科学计算都受内存限制,并受益于局部性改进(如分块或平铺)的优化。这些优化导致异步并行性,该并行性可以由任意任务图表示。不幸的是,除线程构建块(TBB)之外,大多数流行的并行编程模型都不直接执行任意任务图。在本文中,我们定性和定量地比较了TBB,OpenMP doall模型,OpenMP 3.0任务模型和Cilk Plus中任意任务图的编程和执行。我们在稀疏矩阵迭代求解器和分子动力学基准上展示了8和40核共享内存系统的性能和可伸缩性结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号