首页> 外文会议>2012 International Conference on Machine Vision and Image Processing. >Comparative analysis of different wavelet filters for low contrast and brightness enhancement of multispectral remote sensing images
【24h】

Comparative analysis of different wavelet filters for low contrast and brightness enhancement of multispectral remote sensing images

机译:不同小波滤波器对多光谱遥感图像低对比度和亮度增强的比较分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents wavelet filter based low contrast multispectral remote sensing image enhancement by using singular value decomposition (SVD). The input image is decomposed into the four frequency subbands through discrete wavelet transform (DWT), and estimates the singular value matrix of the low-low subband image and then, it reconstructs the enhanced image by applying inverse DWT. This technique is especially useful for enhancement of INSAT as well as LANDSAT satellite images for better feature extraction. The singular value matrix represents the intensity information of the given image, and any change on the singular values changes the intensity of the input image. The proposed technique converts the image into DWT-SVD domain and after normalizing the singular value matrix; the enhanced image is reconstructed with the help of IDWT. The visual and quantitative results clearly show the edge sharpness, increased efficiency and flexibility of the proposed method based on Meyer wavelet and SVD over the various wavelet filters and also with exiting GHE technique. The experimental results (Mean, Standard Deviation, MSE and PSNR) derived from Meyer wavelet and SVD show the superiority of the proposed method over conventional methods.
机译:本文提出了基于小波滤波器的低对比度多光谱遥感图像的奇异值分解(SVD)增强。输入图像通过离散小波变换(DWT)分解为四个频率子带,估计低-低子带图像的奇异值矩阵,然后通过应用逆DWT重构增强后的图像。此技术对于增强INSAT和LANDSAT卫星图像以更好地提取特征特别有用。奇异值矩阵表示给定图像的强度信息,并且奇异值的任何更改都会改变输入图像的强度。所提出的技术将图像转换为DWT-SVD域,并在对奇异值矩阵进行归一化之后;增强的图像在IDWT的帮助下重建。视觉和定量结果清楚地表明了基于Meyer小波和SVD的方法在各种小波滤波器上以及现有的GHE技术下的边缘清晰度,提高的效率和灵活性。从Meyer小波和SVD得出的实验结果(均值,标准差,MSE和PSNR)表明,该方法优于常规方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号