【24h】

Extreme-scale UQ for Bayesian inverse problems governed by PDEs

机译:由PDE控制的贝叶斯逆问题的超大规模UQ

获取原文
获取原文并翻译 | 示例

摘要

Quantifying uncertainties in large-scale simulations has emerged as the central challenge facing CS&E. When the simulations require supercomputers, and uncertain parameter dimensions are large, conventional UQ methods fail. Here we address uncertainty quantification for large-scale inverse problems in a Bayesian inference framework: given data and model uncertainties, find the pdf describing parameter uncertainties. To overcome the curse of dimensionality of conventional methods, we exploit the fact that the data are typically informative about low-dimensional manifolds of parameter space to construct low rank approximations of the covariance matrix of the posterior pdf via a matrix-free randomized method. We obtain a method that scales independently of the forward problem dimension, the uncertain parameter dimension, the data dimension, and the number of cores. We apply the method to the Bayesian solution of an inverse problem in 3D global seismic wave propagation with over one million uncertain earth model parameters, 630 million wave propagation unknowns, on up to 262K cores, for which we obtain a factor of over 2000 reduction in problem dimension. This makes UQ tractable for the inverse problem.
机译:量化大型仿真中的不确定性已成为CS&E面临的主要挑战。当仿真需要超级计算机并且不确定的参数尺寸很大时,常规的UQ方法将失败。在这里,我们解决贝叶斯推理框架中大规模反问题的不确定性量化:给定数据和模型不确定性,找到描述参数不确定性的pdf。为了克服常规方法的维数诅咒,我们利用以下事实:数据通常可提供有关参数空间的低维流形的信息,可通过无矩阵随机方法构造后pdf协方差矩阵的低秩近似。我们获得了一种独立于正向问题维,不确定参数维,数据维和核数进行缩放的方法。我们将该方法应用于3D全球地震波传播的反问题的贝叶斯解,该问题具有超过一百万个不确定的地球模型参数,6.3亿个波传播未知数,在多达262K个核上,为此我们得到了2000倍以上的减少。问题维度。这使得UQ可以解决反问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号