首页> 外文会议>2012 IEEE/ACM International Conference on Computer-Aided Design : Digest of Technical Papers. >Efficient parametric yield estimation of analog/mixed-signal circuits via Bayesian model fusion
【24h】

Efficient parametric yield estimation of analog/mixed-signal circuits via Bayesian model fusion

机译:通过贝叶斯模型融合进行模拟/混合信号电路的有效参量估算

获取原文
获取原文并翻译 | 示例

摘要

Parametric yield estimation is one of the most critical-yet-challenging tasks for designing and verifying nanoscale analog and mixed-signal circuits. In this paper, we propose a novel Bayesian model fusion (BMF) technique for efficient parametric yield estimation. Our key idea is to borrow the simulation data from an early stage (e.g., schematic-level simulation) to efficiently estimate the performance distributions at a late stage (e.g., post-layout simulation). BMF statistically models the correlation between early-stage and late-stage performance distributions by Bayesian inference. In addition, a convex optimization is formulated to solve the unknown late-stage performance distributions both accurately and robustly. Several circuit examples designed in a commercial 32 nm CMOS process demonstrate that the proposed BMF technique achieves up to 3.75× runtime speedup over the traditional kernel estimation method.
机译:参数良率估算是设计和验证纳米级模拟和混合信号电路的最关键挑战之一。在本文中,我们提出了一种新颖的贝叶斯模型融合(BMF)技术来进行有效的参数产量估算。我们的关键思想是从早期阶段(例如,原理图级模拟)借用仿真数据,以有效地估计后期阶段(例如,布局后模拟)的性能分布。 BMF通过贝叶斯推断对早期和后期绩效分布之间的相关性进行统计建模。此外,制定了一个凸优化算法,可以准确而稳健地解决未知的后期性能分布。在商用32 nm CMOS工艺中设计的几个电路示例证明,与传统的内核估计方法相比,所提出的BMF技术可实现高达3.75倍的运行时间加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号